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Abstract: Our paper presents a research approach that conceptualizes education as a 
complex adaptive system, investigated using methods from computational science. We 
describe the development of agent-based models that simulate learning processes within 
classroom environments, drawing on existing quantitative and qualitative data. These 
models support computational experiments that are iteratively refined using real-world 
classroom data, enabling exploration of questions such as: “Which pedagogical 
approaches most effectively support student learning and transfer?” Findings from our 
simulations, based on data comparing instructional approaches, suggest that Productive 
Failure may be particularly effective in fostering deeper learning and transfer. We 
conclude by discussing implications for the design and use of computational modeling in 
educational research. 

Conceptual Rationale and Aims 

Our paper presents a computer modeling approach that responds to recent calls for 
advancing computational educational research (Williamson, Potter, & Eynon, 2019). We use 
computational modeling to represent facets of complex educational systems (Jacobson, 2020), in 
which learning dynamics unfold across multiple system levels—such as individual cognition, 
collaborative learning, and the broader social contexts of schools—and exhibit emergent 
phenomena, including individual learning outcomes and educational equity. Our primary 
objective is to illustrate the development of computer models of classroom learning grounded in 
existing data and to conduct computational experiments to evaluate whether the models 
adequately reflect observed outcomes. Where discrepancies arise, we identify areas for further 
investigation and refinement. We conclude with a discussion of how computational modeling can 
inform the design of real-world classroom experiments and contribute to educational research 
more broadly. 

Literature Review 

Jacobson, Levin, and Kapur (2019) have proposed that computational science 
techniques—long applied to the study of physical, biological, and social complex systems—can 
also complement traditional quantitative and qualitative methods in educational research. 
Computational approaches offer the capacity to model complex, dynamic systems that evolve 
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over time, capturing emergent phenomena and interactions across multiple levels. While 
quantitative methods are valuable for testing hypotheses and identifying statistically significant 
relationships between variables, they may oversimplify complex phenomena by focusing on 
predetermined variables and generalizations, often overlooking contextual nuance, local 
perspectives, and the subjective decisions embedded in the research process (Johnson & 
Onwuegbuzie, 2004). In contrast, qualitative methods offer rich, contextual insights but may be 
limited by subjectivity, reduced generalizability, time-intensive data collection, challenges in 
replication, complex analysis procedures, and ethical considerations (Denzin & Lincoln, 2018, 
pp. 1–15). Our research seeks to move beyond the quantitative–qualitative paradigm divide by 
advancing computational educational research as a methodological bridge—one that combines 
the strengths of both approaches to model and generate insights into complex learning 
environments (Jacobson, Levin, & Kapur, 2019). 

Our research employs a multi-mediator modeling (MMM) approach (Levin & Datnow, 
2012), which integrates elements of agent-based modeling (a “bottom-up,” algorithm-based 
method; Wilensky & Rand, 2015) and system dynamics (a “top-down,” equation-based method; 
Smith, 2007). We propose that computational approaches such as agent-based modeling, system 
dynamics, and multi-mediator modeling enable the simulation of interactions among multiple 
agents or factors over time, capturing emergent and non-linear behaviors that are difficult to 
observe directly (Jacobson, Kapur, & Reimann, 2016). These methods complement traditional 
quantitative and qualitative approaches by providing dynamic visualizations, allowing for the 
testing of hypothetical interventions, and offering the potential to inform real-time educational 
decision-making. 

Our study employs computational educational research to compare pedagogical 
approaches using real-world data, with the goal of generating scalable, evidence-based insights 
that more effectively capture the complexity of classroom learning than traditional methods. Our 
initial analysis focuses on two contrasting instructional designs. The first is Productive Failure 
(PF) (Kapur, 2008), an approach in which learners engage with complex, ill-structured problems 
without immediate support, often experiencing initial failure. This productive struggle is 
intentionally designed to activate prior knowledge and cognitive engagement, ultimately leading 
to deeper conceptual understanding and improved transfer of learning when followed by explicit 
instruction. The second approach is Direct Instruction (DI), as described in the structured 
teaching model proposed by Engelmann and Carnine (1982), which is grounded in the belief that 
all students can learn through carefully sequenced, explicit instruction that emphasizes clarity, 
mastery, and the systematic development of generalizable skills. Of particular interest in our 
study is the sequencing of DI followed by student-centered problem-solving. 
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In their meta-analytic review of 53 empirical studies on different pedagogical approaches, 
Sinha and Kapur (2021) focused on three instructional methods: Instruction followed by Problem 
Solving (I-PS), commonly referred to as "regular teaching" or direct instruction; Problem 
Solving followed by Instruction (PS-I), often associated with problem-based or collaborative 
learning; and Productive Failure (PF). Their findings revealed that PS-I produced superior 
outcomes compared to I-PS, with a Hedges’ g effect size of 0.36—representing a 1.8 times 
improvement over regular teaching (Hedges, 1981). Similarly, PF outperformed I-PS with a 
Hedges’ g of 0.58, indicating a 2.9 times enhancement. These results were further supported by 
Jacobson et al. (2017), who reported a Hedges’ g of 0.95 for PF compared to I-PS—an 
impressive 4.8 times advantage over traditional instruction. These findings underscore the 
potential of innovative pedagogical methods like PF to significantly enhance learning outcomes 
beyond conventional techniques. A central question addressed in this paper is whether such 
empirical findings can be replicated and better understood through computational educational 
research. 

Method 

The Learning Models developed for this project were built using the agent-based 
modeling tool NetLogo (Wilensky, 1999) (Figures 1-8). These models represent the educational 
problem space as a complex system (Jacobson et al., 2019), composed of nodes (i.e., circles) 
representing agents or elements, and links (i.e., lines) denoting their interactions. Two distinct 
models were created: one simulating the Productive Failure (PF) approach (view model) and the 
other simulating Direct Instruction (DI) (view model). Both models are run independently of 
each other.  

The first level of each model represents the instructional phase, containing nodes that 
reflect the pedagogical fidelity of the instructional approach—either PF or DI—including the 
exploration and consolidation phases within a typical 60-minute classroom lesson for a PF 
lesson, and the instruction and problem-solving phases within a typical DI lesson. Subsequent 
levels are common to both models. 

The second level captures student affect, specifically student affective boost, which 
reflects the range of students’ emotional engagement, from low to high. Kapur (2024) defines 
affective boost as the motivational uplift students experience as they move toward a learning 
goal, influenced by factors such as the desire to avoid loss, recognition of progress, increasing 
motivation when near goal completion, and the satisfaction of task completion. 
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The third level represents the student cognitive level, modeling the potential for cognitive 
development during the lesson. This includes elements such as prior knowledge, inert and 
elaborated schemas.  

External to these levels are nodes representing the dependent variables: knowledge and 
transfer, which serve as indicators of student learning and the transfer of learning. 

In the visualizations, green lines indicate positive or supportive interactions (ranging 
from 0 to +1), while red lines denote negative or inhibitory interactions (ranging from -1 to 0). 
The models display numeric node values that reflect the cumulative effects of these network 
interactions across simulation runs. 

Settings for the independent variables used in the representative computational 
experiments—adjusted via box sliders for each node—are displayed in each box slider in Figures 
1-8. With each model run, the sizes of the dependent variable nodes and their corresponding 
numerical values change dynamically. Figures 1-8 illustrate the initial settings for the 
independent variables.  

These variables include Productive Failure (PF) fidelity, which refers to the extent to 
which a learning activity adheres to the core design principles of the productive failure approach 
(Kapur, 2008). Affective Boost (AB) Low represents a composite of emotions, moods, interests, 
and motivational states that influence how students perceive and respond to learning situations 
(Kapur, 2024). For instance, a high AB Low setting indicates a significant reduction in student 
engagement or enthusiasm for a task. 

Compatible prior knowledge refers to well-organized knowledge structures that can be 
readily accessed and applied to new situations, while incompatible prior knowledge consists of 
disconnected or poorly structured knowledge, making transfer and application more difficult 
(Bransford, 2000, p. 237). Inert schema relates to knowledge that learners possess but fail to 
apply in other contexts (Renkl, Mandl, & Gruber, 1996). Finally, No Assembly refers to 
fragmented knowledge structures in which students focus on superficial aspects of problems 
rather than underlying principles, thus limiting flexible knowledge application (Chi, Feltovich, & 
Glaser, 1981). 

In this study, we conducted four computational experiments beginning from the initial 
Pretest state, altering only the pedagogical approach fidelity independent variable across both the 
PF and DI models. These experiments drew on data from the meta-analytic review by Sinha and 
Kapur (2021), as discussed above. Based on their findings, we assigned activation values to the 
PF Fidelity and DI Fidelity nodes in each model. A “small” node size corresponds to an 
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activation value of 0, indicating the absence of instruction. An activation value of 0.20 represents 
the Hedges’ g effect size for the I-PS condition (equivalent to approximately one year of 
instruction). A value of 0.36 reflects the PS-I Hedges’ g effect size (approximately 2.8 years of 
instruction), while a value of 0.58 corresponds to the PF Hedges’ g effect size (approximately 3.9 
years of instruction). 

Results 

Table 1 presents the settings for the independent variables and the corresponding results 
of the computational model experiments for the dependent variables Knowledge and Transfer. 

 
Table 1 
Independent Variable Settings and Dependent Variable Results for Three Computer Experiments. 
Instructional fidelity effect sizes from Sinha & Kapur (2021). 
 

Experiment Independent Variables 
Dependent Variables 

 PF  DI 

Pretest 

Instructional Fidelity Effect Size 0.00 

Knowledge 0.00 0.00 AB Low 0.67 

Compatible Prior Knowledge 0.07 

Incompatible Prior Knowledge 0.67 

Transfer 0.00 0.00 Inert Schema 0.60 

No Assembly 0.34 

1 

Instructional Fidelity Effect Size 0.20 

Knowledge 0.08 0.00 AB Low 0.67 

Compatible Prior Knowledge 0.07 

Incompatible Prior Knowledge 0.67 

Transfer 0.00 0.00 Inert Schema 0.60 

No Assembly 0.34 

2 

Instructional Fidelity Effect Size 0.36 

Knowledge 0.49 0.05 AB Low 0.67 

Compatible Prior Knowledge 0.07 

Incompatible Prior Knowledge 0.67 

Transfer 0.16 0.00 Inert Schema 0.60 
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No Assembly 0.34 

3 

Instructional Fidelity Effect Size 0.58 

Knowledge 0.73 0.25 AB Low 0.67 

Compatible Prior Knowledge 0.07 

Incompatible Prior Knowledge 0.67 

Transfer 0.59 0.00 Inert Schema 0.60 

No Assembly 0.34 
 
 
 
Figures 1-8 show screenshots of the Learning Model link/node states for the pretest and each 
experiment for both PF and DI models. Instructional fidelity effect sizes for each model from 
Sinha & Kapur (2021). 

 
Discussion 

Before any instructional interventions were applied, a pretest was conducted on both 
models to establish baseline levels of knowledge and transfer for the PF and DI conditions (as 
shown in Figures 1 and 2). The instructional fidelity effect size was set to 0.00, indicating no 
instructional manipulation at this stage. As expected, when the models were run, both the PF and 
DI groups recorded zero gains in knowledge and transfer. Additionally, the student affective 
boost and student cognitive level elements remained unchanged across both models. This pretest 
confirmed that neither instructional approach yields any impact in the absence of instruction, 
establishing a consistent baseline across both models. 
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Figure 1  
Screenshot of the PF Model link/node states for the pretest, with instructional fidelity effect size 
set to 0.00.  

 

 
PF pretest 

 

7 
 



Figure 2 
Screenshot of the DI Model link/node states for the pretest, with instructional fidelity effect size 
set to 0.00.  
 

 
DI pretest 

 

8 
 



In the first experiment, the instructional fidelity effect size was modestly increased to 
0.20 across both models (as shown in Figures 3 and 4), representing the introduction of a low 
level of structured instructional support. Under these conditions, the Productive Failure model 
(Figure 3) demonstrated a small improvement in knowledge acquisition (effect size = 0.08), 
while the Direct Instruction model (Figure 4) showed no measurable gains. Neither approach 
resulted in any improvement in transfer performance, suggesting that low instructional fidelity 
was insufficient to support deeper learning or the application of concepts beyond rote 
memorization. 
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Figure 3 
Screenshot of the PF Model link/node states for Experiment 1, with instructional fidelity effect 
size set to 0.20.  
 

 
PF Experiment 1 
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Figure 4 
Screenshot of the DI Model link/node states for Experiment 1, with instructional fidelity effect 
size set to 0.20.  
 

 
DI Experiment 1 
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With instructional fidelity further enhanced to an effect size of 0.36, Experiment 2 
revealed more pronounced differences between the two instructional approaches. The Productive 
Failure model resulted in a moderate gain in knowledge (effect size = 0.49) and a small 
improvement in transfer (effect size = 0.16). In contrast, the Direct Instruction model showed 
only a minimal gain in knowledge (effect size = 0.05) and no improvement in transfer. 

In Experiment 2 of the PF model (Figure 5), noticeable shifts emerged in the node 
configurations: there was an increase in Affective Boost High and Elaborated Schema nodes, 
along with corresponding decreases in Affective Boost Low and Inert Schema nodes. By 
comparison, in the Experiment 2 DI model (Figure 6), there was no increase in the affective 
boost and only a minimal decrease in the No Assembly node, with all other elements remaining 
unchanged. These results suggest that Productive Failure begins to demonstrate stronger benefits 
over Direct Instruction as the fidelity of instructional elements improves. 
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Figure 5 
Screenshot of the PF Model link/node states for Experiment 2, with instructional fidelity effect 
size set to 0.36.  
 

 
PF Experiment 2 
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Figure 6 
Screenshot of the DI Model link/node states for Experiment 2, with instructional fidelity effect 
size set to 0.36.  
 

 
DI Experiment 2 
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Experiment 3 represented the highest level of instructional fidelity, with an effect size of 
0.58 (as shown in Figure 7). Under these conditions, the PF model produced substantial gains in 
both knowledge (effect size = 0.73) and transfer (effect size = 0.59), demonstrating its 
effectiveness when implemented with high fidelity. While the Direct Instruction model also 
showed an increase in knowledge (effect size = 0.25), it continued to yield no improvement in 
transfer performance (as shown in Figure 8). 
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Figure 7 
Screenshot of the PF Model link/node states for Experiment 3, with instructional fidelity effect 
size set to 0.58.  
 

 
PF Experiment 3 
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Figure 8 
Screenshot of the DI Model link/node states for Experiment 3, with instructional fidelity effect 
size set to 0.58.  
 

 
DI Experiment 3 
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In Experiment 3 of the PF model (Figure 7), we observe even more pronounced shifts in 
node sizes, with a substantial increase in Affective Boost High and Elaborated Schema nodes, 
and a significant corresponding decrease in Affective Boost Low and Inert Schema nodes. In 
contrast, the Experiment 3 DI model (Figure 8) still shows no increase in Affective boost, but 
exhibits a greater decrease in the No Assembly node and a minimal increase in Elaborated 
Schema, while all other nodes remain unchanged. These findings suggest that the benefits of 
Productive Failure become increasingly pronounced as instructional fidelity 
improves—particularly in supporting the transfer of learning to novel contexts, an area where 
Direct Instruction consistently underperformed. 

The results of these computational experiments provide preliminary validation for aspects 
of the model that align with empirical findings—particularly the pattern of PS-I outperforming 
I-PS—consistent with the direction of results reported by Sinha and Kapur (2021). In Experiment 
2, the knowledge gain for Productive Failure (0.49) was approximately 9.8 times greater than 
that for Direct Instruction (0.05), which exceeds the relative advantage observed in Sinha and 
Kapur’s meta-analysis, where PF was found to be 1.8 times more effective in high-fidelity 
implementations. In Experiment 3, PF outperformed DI by a factor of 2.9 in knowledge 
acquisition (0.73 vs. 0.25) and demonstrated clear superiority in transfer performance (0.59 vs. 
0.00). These results align with the direction of empirical findings, although the transfer 
advantage in the computational model appears even more pronounced—possibly reflecting an 
amplification of PF’s benefits under idealized implementation conditions. Such discrepancies 
between modeled and empirical outcomes also serve as valuable opportunities for iterative model 
refinement. For example, if the model overestimates transfer gains under Productive Failure, this 
may indicate the need to review and adjust how cognitive processes like schema elaboration or 
motivational factors such as affective boost are parameterized. By comparing simulated 
outcomes with real-world data, the model can be progressively refined, reflecting a cyclical, 
adaptive, and evolutionary approach to computational educational research. This iterative 
process can help enhance the model’s validity and support its use as a predictive and explanatory 
tool for future instructional design research. 

Conclusion 

This paper reports on research that applies computational modeling as a tool in 
educational research. By modeling classroom learning as a complex system, this approach 
enables the exploration of how individual-level factors—such as affective boost, prior 
knowledge, and schema development—interact to produce learning and transfer outcomes. We 
began by validating our model using real-world empirical data, then conducted computational 
experiments to explore new variable configurations beyond those yet tested in empirical studies. 
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This process illustrates how computational modeling can inform the design of future research, 
guiding the development of research questions, predicted outcomes, and experimental structures 
across diverse educational contexts. We advocate for broader adoption of computational methods 
as a complement to existing quantitative and qualitative approaches in educational research. 
Such integration may deepen our understanding of dynamic learning processes and contribute to 
evidence-based decision-making in education. 
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